US 2019/0297155 Al

or a representational state transfer protocol (REST) that
enables the client application 205 to access and/or operate
on resources associated with the service. The API can enable
the client application 205 to transmit data to and/or receive
data from the service. API calls can also cause the service to
perform various operations and/or call additional services
using additional API calls.

[0044] In other embodiments, the client application 205 is
a web-based application displayed within a browser of a
client device 120. The client application 205 can include a
series of resources (e.g., hypertext markup language
(HTML) documents, images, scripts, etc.) requested from a
server associated with a website. The browser receives the
resources and interprets the resources to display a represen-
tation of the website on a display of the client device 120.
The client application 205 is therefore platform-independent
in that the client application 205 can be displayed on a
plurality of different client devices 120 running different
operating systems.

[0045] In some embodiments, the client application 205
interfaces with the one or more services through an API
gateway 210. The API gateway 210 is implemented by a
server device 110 and redirects API calls received from
client devices 120 to the various services in the client-server
architecture 200. In other embodiments, the API gateway
210 is omitted or selectively bypassed and the client devices
120 transmit API calls to the services directly.

[0046] In some embodiments, the client application 205
enables an instructor to create hand-outs for a class. A
hand-out refers to a file or data structure that includes
information related to an assignment intended to be pub-
lished to students within the class. The hand-out can include
a number of fields including: a hand-out identifier, a title of
the assignment, a body of the assignment that includes
text-based instructions for the students on how to complete
the assignment, a due date for the assignment, and a list of
attachments associated with the assignment. The hand-outs
can be created and stored locally on a particular client device
120. The attachments can include files (e.g., documents,
images, videos, etc.), placeholders for a file the student is to
turn in, and activities the student is to complete as part of the
assignment. The activities are performed using third-party
applications that implement a portion of a class kit software
framework. Examples of activities can include, but are not
limited to, reading a chapter of a digital book or textbook,
taking a quiz or answering a set of problems, tracking time
spent performing a task such as playing an interactive game
or performing a digital experiment, and so forth.

[0047] In some embodiments, the client-server architec-
ture 200 includes a hand-out service 220. The hand-out
service 220 is configured to manage hand-outs. In some
embodiments, the hand-out service 220 is configured to sync
hand-outs created on one client device 120 with another
client device 120 to enable an instructor to work on multiple
devices. In some embodiments, the hand-out service 220 is
configured to enable the hand-outs to be published to a list
of students. Publishing a hand-out refers to making the
information in the hand-out available to be viewed by the
students on a separate client device 120 as well as handling
various back-end operations related to the attachments for
the hand-outs.

[0048] In some embodiments, the client-server architec-
ture 200 can also include a hand-in service 230. A hand-in
refers to a placeholder for a file or data structure, which

Sep. 26, 2019

indicates that a student is instructed to create a file or data
structure to turn in in order to complete the assignment. A
student can create the file or data structure and submit the
file or data structure to the hand-in service 230 to satisfy the
requirement for completing the assignment.

[0049] In some embodiments, the client-server architec-
ture 200 can also include a school management service 240
configured to manage administrative information for a
school district related to the structure of classes. For
example, the school management service 240 can maintain
records that indicate which instructors are assigned to each
of a plurality of classes. The records can also indicate which
students are enrolled in each of the plurality of classes. Each
instructor or student can be assigned an instructor identifier
or a student identifier, respectively. Each class created by the
school district can be associated with a class identifier. A
separate record can then be created for each class identifier
that lists a roster of student identifiers for students enrolled
in the class. In some embodiments, a relational database
associates instructor identifiers and/or student identifiers
with class identifiers in one or more tables. The relational
database can be queried using Structured Query Language
(SQL) or some other type of query language to return
information that identifies the structure of various classes.
[0050] In some embodiments, the school management
service 240 includes an administrative interface that enables
an administrator for a school district to create classes and
specify the students enrolled in the class. The administrative
interface can be, e.g., a web-based interface requiring the
administrator to provide credentials in order to change the
rosters for each class. In other embodiments, the school
management service 240 includes an interface to download
data from a separate and distinct school information system
that the school district maintains separately from the client-
server architecture 200. The classes and rosters can be
automatically downloaded from the school information sys-
tem.

[0051] In some embodiments, the client-server architec-
ture 200 can also include a progress pipeline 250. The
progress pipeline 250 provides a secure architecture for
managing information related to progress tracking as stu-
dents complete the assignments described in the hand-outs
published by the instructors. The client devices 120 of the
students can include a background process (i.e., a daemon)
configured to monitor activities related to one or more
third-party applications installed on the client devices 120.
The daemon tracks progress made by the students in com-
pleting the assignments specified in one or more published
hand-outs and transmits information related to the progress
of each student to the progress pipeline 250. The progress
pipeline 250 aggregates and stores the progress information
to enable the instructor to view comprehensive reports for
one or more students in a class.

[0052] In some embodiments, the progress pipeline 250 is
implemented as a number of separate services executing on
different server devices 110 and structured to process prog-
ress information in a datatlow in a pipelined manner. In other
embodiments, the progress pipeline 250 can be implemented
with a number of services executing on a single server
device 110.

[0053] In some embodiments, the client-server architec-
ture 200 can also include an identity service 260. The
identity service 260 enables data related to particular client
devices 120 to be associated with particular people (e.g.,



